

ENZYMES AND WORK-RELATED ASTHMA

Enzymes derived from bacteria, fungi or livestock are widely used in commercial products and laboratories. Awareness of their allergenic potential from airborne exposure was recognized in the 1960's when enzymes were first used as additives in cleaning detergents.

Table I lists the enzymes associated with workrelated asthma, the source of those enzymes and the industries where the enzymes are used. All the enzymes in Table I have been shown by specific antigen challenge testing to cause asthma. Sensitized individuals have been shown to have both positive skin tests and IgE-specific antibodies to the individual enzymes. The references list the key articles for the medical testing.

The allergic potential of enzymes is not just of importance in the workplace. The etiologic antigens of many common environmental allergens are enzymes. For example, house dust mite antigens include amylase, protease, and trypsin; and cockroach antigen includes a protease.

Determining enzyme-related asthma is no simple task. Specific antigen bronchoprovocation challenge testing is not part of standard medical care. In addition, amylase is the only enzyme for which standard clinical laboratories can measure IgE-specific antibodies. Measurement with skin testing of IgE-specific antibodies to other enzymes or antigens have been developed by individual researchers, but such testing is not available in the normal clinical setting. Further, there are often multiple other non-enzyme-related exposures in the workplace that can cause asthma. Examples of such workplaces include a detergent manufacturer, a bakery, a grain mill, a grain storage facility and a health care setting. Therefore, it is not surprising that it is often difficult to isolate the specific allergen from the clinical history for an individual who develops work-related asthma in these types of industries.

However, the identification of a specific enzyme through a clinical history may be feasible for patients who work in some health care or production settings. For example, if a nurse or pharmacist has an immediate reaction after handling or mixing a pancreatic extract, the clinical history would point to that enzyme as the putative agent associated with the patient's asthma. In a factory setting, a worker with an immediate reaction during the mixing of an enzyme as an additive to a product would point to that enzyme as the agent associated with the patient's asthma. Additionally, peak flow testing or repeated spirometry measurements performed at work and away from work may confirm the work relatedness of symptoms in an industry where enzyme use is the likely asthma-causing agent.

Over the last 25 years, only five work-related asthma patients where the cause was attributed to an enzyme have been reported in Michigan. The following are two examples of the cases reported to the Michigan surveillance system. **CASE #1.** A man in his 50's developed wheezing, cough, chest tightness and shortness of breath eight years after beginning to work at a detergent manufacturer. He was hospitalized twice with the diagnosis of asthma. He had smoked half a pack of cigarettes a day for 30 years. He had a family history but no personal history of allergies. His spirometry showed very severe obstruction (FEV₁ percent predicted of 32%) with hyper-reactivity. The suspected allergens were the protease enzymes Esperase® and Savinase®.

a

Table I. Enzymes Used Commercially that are Known to Cause Work-Related Asthma		
Name of Enzyme (Brand Name®)	Source	Use
Proteases	Bacillus subtilis	Detergents, Production of sweeteners and
Amylase	Bacillus lichniformis	alcohol,
Detergents (Termamyl [®] ,	Bacillus amyloliguafaciens	Bread production,
Ban [®] , Duramyl [®])	Aspergillus orvzae	Pharmaceutical production
Pharmaceutical	Aspergillus melleus	1
(Flaviastase [®])	Cow or pig pancreas	
Bromelain	Pineapples	Meat Tenderizer
	- montproc	Alternative Medication
β-Glucanase	Aspergillus aculeatus	Beer wine and starch production
	Bacillus	Additive to animal feed
	Trichoderma reesi and	
	longibrachiatum	
Cellulase	Trichoderma viride	Detergents processing coffee
(Caranzyma®) Endolasa®	Humicola insolans	Detergents, processing conce, Dharmacautical production
(Calcuzymew, Endolasew,	Aspensillus viser	i nannaceutical production
	Aspergillus amzae	Detergents production of fragrances haby
(Lipoloso® Lipoloso Liltro®	Thermomonas lanuaino dius	food baked goods pasts and choose Additive
(Lipolose, Lipolase Ollia,	Candida	to onimal food
LipoPinne®)	Canalaa Dhir comus on cuich an	to annual reeu
T	Knizomucor michar	Characterine and the firm Laboratories
Lysozyme	Egg whites	Cheese and wine production, Laboratories
Pancreatin	Cow or pig pancreas	Pharmaceutical production
Amylase		
Lipase		
Protease	-	
Papain	Papaya	Meat tenderizer,
		Pharmaceutical laboratories,
		Dentistry
Pectinase	Aspergillus aculeatus	Production of fruit salad, fruit juice, wine, food
(Pectinex®)	Penicillum sp.	coloring, extraction of citrus aroma and
	Trichoderma sp.	production of animal feed
Pepsin	Pig stomach	Food production including cheese, non-dairy
		snacks, cereals, Leather products,
		Laboratories
Peptidase	Serratia	Pharmaceutical production
Phytase	Aspergillus niger	Additive to animal feed
	Yeast	
Pronase	Streptomyces griseus	Pharmaceutical
(Empynase®)		
Protease	Bacillus sp	Detergent
$(\Delta ca ase \mathbb{R})$ Esperase \mathbb{R}	Daenna sp.	Detergent
Everlage Mayatage R		
Neutramase® Protamax®		
Savinase®)		
Trunsin	Cow or nig paparoos	Diastia production
119080	Cow or pig parereas	Dharmaceutical production
Vylanaga	A an anaillus an	Dula Dapar Draduation Dalarry
(Dontonon®)	Asperguius sp. Trichodorma sr	Clarification of jujess
(rentopante)	Trichoaerma sp.	Extraction of office plant oils
		Extraction of coffee, plant offs

CASE #2. A woman in her 50's developed nasal symptoms, wheezing, cough, chest tightness and shortness of breath three years after beginning to work at a pharmaceutical company. She was hospitalized twice for her asthma. She smoked a pack of cigarettes a day for 21 years, quitting seven years prior to the development of her asthma. She had no family or personal history of allergies. Her spirometry showed moderate obstruction. The suspected allergen was a pancreatic extract.

An interesting observation relevant to Case #1 who had severe obstruction is that exposure to high airborne concentrations of proteases in animal experiments have caused emphysematous lesions. These experiments were initiated given the known destructive effects of proteases on tissue. Further, there is limited evidence of increased prevalence of emphysema in a study of papaya-exposed and detergent-exposed workers. Additionally, proteases may cause a non IgE-based inflammatory reaction. Trypsin, in addition to having proteolytic activities, act as cell-signaling molecules in the airways where there are protease-activated receptors. Trypsin added to *in vitro* guinea pig bronchi invoked contractions.

There are at least 100 genetically engineered enzymes that are commercially available. There are no specific OSHA standards for enzymes, which are regulated as nuisance dusts. Permissible exposure limits for nuisance dusts allow exposures to be high enough to see dust in the air. Encapsulation of the enzymes in the detergent industry has reduced exposure and the incidence of sensitization among workers in that industry, but has not eliminated sensitization completely. Health practitioners should have a high level of suspicion for any patient with asthma who works with any enzyme, even those not listed in Table 1, as potentially capable of causing sensitization and asthma.

As always we are interested in receiving any reports of known or suspected work-related asthma from enzymes or other workplace agents. Please call Kenneth Rosenman, M.D. at 1-800-446-7805, if you have any questions or if we can be of assistance in diagnosis or management.

REFERENCES

- 1. Aiken TC, Ward R, Peel ET, et al. Occupational asthma due to porcine pancreatic amylase. Occup Environ Med 1997; 54: 762-764.
- 2. Baur X, Fruhmann G. Allergic reactions, including asthma, to the pineapple protease bromelain following occupational exposure. Clin Allergy 1979; 9: 443-450.
- 3. Belleri L, Brunelli E, Crippa M, et al. Occupational exposure to pectinase. Allergy 2002; 57: 755.
- 4. Bernstein JA, Bernstein DI, Warrington R, et al. Occupational asthma induced by inhaled egg lysozyme. Chest 1993; 103: 532-535.
- 5. Caballero ML, Gómez M, González-Muñoz M, et al. Occupational sensitization to fungal enzymes used in animal feed industry. Int Arch Allergy Immunol 2007; 144: 231-239.
- Colten HR, Polakoff PL, Weinstein SF, et al. Immediate hypersensitivity to hog trypsin resulting from industrial exposure. N Engl J Med 1975, 292: 1050-1053.
- Kempf W, Oman H, Wüthrich B. Allergy to proteases in medical laboratory technicians: A new occupational disease? J Allergy Clin Immunol 1999; 104: 700-701.
- 8. Kim HY, Nahm DH, Park HS, et al. Occupational asthma and IgE sensitization to cellulase in a textile industry worker. Ann Allergy Asthma Immunol 1999; 82:174-178.
- 9. Lipinska-Ojrzanowska A, Swierczynska-Machura D, Tymoszuk D, et al. Occupational Asthma in Female Factory Worker Resulting from Exposure to Savinase in Dishwashing Tablets-A Case Study. J Occup Health 2013 May 2 [Epub ahead of print].
- 10. Loureiro G, Tavares B, Pereira C, et al. Occupational allergy to fungal lipase in the pharmaceutical industry. J Investig Allergol Clin Immunol 2009; 19: 242-244.
- O'Connor TM, Bourke JF, Jones M, Brennan N. Report of occupational asthma due to phytase and beta-glucanase. Occup Environ Med 2001; 58: 417-419.
- 12. Park HS, Nahm, Dh. New occupational allergen in a pharmaceutical industry: serratial peptidase and lysozyme chloride. Ann Allergy Asthma Immunol 1997; 78: 225-229.

Occupational Diseases Known or Suspected the Reporting of Michigan Law Requires

ligM S087-446-7805-I anonqalaT 9095-257 (712) FAX ODREPORT@ht.msu.edu **E-Mail** npə.usm.mao.www dəW Reporting can be done by:

Cansing, MI 48909-8149 P.O. Box 30649 Services Division Management and Technical (AHSOIM) nonstration (MHSOIM) Michigan Occupational Safety &

JO calling (517) 322-1817 Reporting forms can be obtained by

S087-446-7805

Printed on recycled paper.

 ${
m S}$ Remember to report all cases of occupational disease!

Phone (517) 353-1846 In this issue: v24n4 Enzymes and Work-Related Asthma

Michigan State University **College of Human Medicine**

909 Fee Road, Room 117 East Lansing, MI 48824-1316

West Fee Hall

*****P

President, Michigan Thoracic Society Cynthia Ray, M.D.

.G.nd ,.G.M ,iupibbiS smins

School of Public Health

University of Michigan

Wayne State University

James Blessman, M.D., M.P.H.

Asthma Society

Rhidu Burton, M.D.

Advisory Board

Thomas G. Robins, M.D., M.P.H.

President, Michigan Allergy and

& Environmental Medical Association President, Michigan Occupational

Division of Occupational Medicine

Project SENSOR Staff

(VHSOIW) noitorteinimbA dilasH & vista? Innoithquood nngidoiM odt iA

Co-Director Director MIOSHA, Project SENSOR, Martha B. Yoder

suisibe a number of the second -Kusisin Jane and Andrewski -Kusisin Andrewski -Kusisin - Kusisin Andrewski - Kusisin - Kusisin Andrewski - Kusisin - Kusisin

Angel Bermudez Patient Interviewers: Ruth VanderWaals Ττας Carey Project SENSOR Office Staff: Melissa Millerick-May, M.S., Ph.D. Project SENSOR Coordinator Mary Jo Reilly, M.S. Project SENSOR, Co-Director Professor of Medicine Kenneth D. Rosenman, M.D.

Trinh Tran

Jonathan Kao

and comments are welcome. Health and is available at no cost. Suggestions National Institute for Occupational Safety and of Human Medicine with funding from the quarterly by Michigan State University-College The Project SENSOR News is published

East Lansing, MI 48824-1316 909 Fee Road, Room 117

West Fee Hall

WHO-OSM

9481-858 (712)